《 大学物理 B2》课程教学大纲

课程名称: 大学物理 B2 课程类别(必修/选修): 必修

课程英文名称: College physics B2

其中实验/实践学时: 18 总学时/周学时/学分: 64/4/4

先修课程: 高等数学、普通物理学 1

授课时间: 1-16 周, 周二 3-4 节、周四 3-4 节 授课地点: 7B201

授课对象: 2018 光信息科学与工程专业 1、2 班

开课学院: 电子工程与智能化学院

任课教师姓名/职称:叶海/讲师

答疑时间、地点与方式: 1、每次上课的课前、课间和课后,采用一对一的问答方式: 2、每次发放作 业时,采用集中讲解方式; 3、周四下午,8B102 答疑; 4、手机、微信等线上答疑。

课程考核方式: 开卷() 闭卷(や) 课程论文() 其它()

使用教材: 《大学物理学》,赵近芳、王登龙主编,北京邮电大学出版社(第五版修订版) 教学参考资料:

- (1)《物理学原理在工程技术中的应用》,马文蔚,高等教育出版社,(2006年6月第三版)
- (2)《普通物理学》,程守洙 江之永主编,高等教育出版社,(2008第六版)
- (3) 《物理学教程》,马文蔚周雨青,高等教育出版社,(2006年第二版)
- (4) 《大学物理精品课程》教学网站: http://dxwl.dgut.edu.cn; https://ua.ulearning.cn/course web/index.html#/main/article/8569/560/0

课程简介: 大学物理 B2 包括电磁学、波动光学和量子物理基础几大部分,是我校光信息科学与 工程专业学生的一门重要的学科基础必修课; 也是本专业加强系统实验方法和实验技能训练的必要。 该课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是每一个高级 应用型人才所必备的。该课程在培养学生树立科学的世界观,增强学生分析问题和解决问题的能力, 培养学生科学实验能力,培养学生的探索精神、创新意识、严谨的治学态度、活跃的创新意识、理论 联系实际和适应科技发展的综合应用能力等方面, 具有其他课程不能替代的重要作用。

课程教学目标

- 知识与技能目标:通过本课程学习,使学生系统地掌握 关联(授课对象为理工科专业学生 必要的物理基础知识,理解物理的基本规律,并了解当前的物理 | 的课程填写此栏): 学新成就。
- 过程与方法目标:物理学习应注重从实践观点出发进行 学理论,以及光学设计、电子电 分析和综合物理现象,阐明物理规律:在学习中实现独立获取知 | 路及光电信息系统的基本知识的 识的能力,掌握科学的学习方法,阅读和理解相关的物理类教材、能力 参考书和科技文献,不断地扩展知识面;培养分析、研究和解决 问题的能力,能根据实际情况,抓住主要矛盾,运用所学的物理 理论和研究方法进行分析、研究,增强独立思考的能力和思维能 | ☑C3. 从事光电信息专业所需的技 力。
- 情感、态度与价值观发展目标:通过普通物理学课程教 能力 学,应注重培养学生求实精神、创新意识、科学美感并引导学生

本课程与学生核心能力培养之间的

☑C1. 能够运用数学物理等基础科

"C2. 项目管理和团队合作的能 力

术、技巧以及使用软硬件工具的

"C4. 设计与实施光电信息工程

根据所学知识树立科学的人生观和价值观。	相关实验,并且能够进行资料的
	分析与解释
	"C5. 设计光电器件和光学系统
	的能力
	"C6. 认识时事议题和珠三角产
	业趋势,了解工程技术对环境、
	社会及全球的影响,并且培养跨
	领域持续学习的习惯和能力,以
	及外语能力
	"C7. 发现、分析及处理复杂工
	程问题的能力
	☑C8. 培养职业道德以及认识社会
	责任

	理论教学进程表				
周次	教学主题	教学 时长	教学的重点、难点、课程思政融入点	教学 方式	作业安排
1	电场、电场强度 和叠加原理	4	重点:电场强度概念的引出与定义 难点:叠加原理计算电场强度的方法 课程思政融入点:点电荷理想模型: 辩证唯物主义思想中主、次要矛盾的 关系	课堂讲授	
2	高斯定理、环路 定理、电势	4	重点:静电场高斯定理及其应用,电 势概念的定义以及计算方法 难点:静电场高斯定理及其应用	课堂讲授	3 题
3	静电场中的导体 与电介质电介质, 电容及静电场的 能量	4	重点:静电平衡,电容的概念 课程思政融入点: 导体的静电平衡: 辩证唯物主义思想中具体问题具体分析思维	课堂讲授	2 题 课程思政作业: 要求学 生阅读 1-2 篇物理发展 辩证唯物主义思想中有 关具体问题具体分析思 维的文章
4	磁场、磁感应强 度、磁通量	2	重点:磁场中的高斯定理,毕奥一萨 伐尔定律及其应用 难点:毕奥一萨伐尔定律及其应用	课堂讲授	2 题
5	国庆节放假				
6	安培环路定理	2	重点:安培环路定理及其应用 难点:安培环路定理及其应用	课堂 讲授	3 题
7	磁场对载流导线 的作用	2	重点:安培定律,磁场对载流线圈的作用	课堂 讲授	2 题 课程思政作业: 阅读 1-

			难点: 磁场对线圈的作用		2 篇我国物理学的发展 历程及相关科技领域中 的重大成就的相关文章, 并了解古代和现代大学 物理方面的成就,提升 学习大学物理的兴趣, 增强民族 自豪感
8	磁场对运动电荷的作用	2	重点:洛伦兹力及其应用 难点:质谱仪和霍尔效应 课程思政融入点:简单介绍我国无线 电通讯因缺乏芯片的核心技术而受制 于人的 事例,鼓励学生努力学好大 学物理专业知识,在科研中勇于创新, 为提高我国科技自主研发能力而努力 奋斗	课堂讲授	
9	磁介质	2	重点:磁介质的安培环路定律,铁磁质 难点:磁介质的安培环路定律	课堂 讲授	
10	电磁感应定律	2	重点: 楞次定律、法拉第电磁感应定律及其应用难点: 感应电动势的判断 课程思政融入点: 深入挖掘物理学史典型案例的人文内核,进行人生观和价值观教育。在讲法拉第电磁感应定律时介绍法拉第的学术成长历程。法拉第能够成为一名受人尊敬的物理学家不是因为运气好,不是因为机缘巧合,每一次机会来临的看似偶然背后都有法拉第不懈努力而致的必然,机会永远给有准备的人	课堂讲授	2 题
11	动生电动势和感 生电动势、自感 和互感	4	重点:动生电动势和感生电动势 难点:动生电动势和感生电动势原理 的理解和计算	课堂讲授	3 题
12	光的干涉 1	4	重点:干涉条件、杨氏双缝干涉、光程及光程差的概念、薄膜干涉、等厚干涉的原理 难点:半波损失,杨氏双缝干涉、薄	课堂讲授	4 题

			膜干涉的分析与计算,等倾干涉	与等	
13	光的干涉 2	4	厚干涉的区别和联系 重点:劈尖干涉,牛顿环,迈克 干涉仪 难点:劈尖干涉的应用,牛顿环 理与应用,迈克尔逊干涉仪的原	课堂 的原 讲授	3 题
14	光的衍射	4	重点:惠更斯-菲涅尔原理、单缝琅禾费衍射、光栅衍射、圆孔衍现成:半波带法	课堂	5 题
15	光的偏振	4	重点:偏振现象,马吕斯定律,斯特定律; 难点:布儒斯特定律	布儒 课堂 讲授	5 题
16	光的量子性、粒 子的波动性和测 不准关系	2	重点:光电效应,波粒二象性,海准关系 难点:量子理论的理解 课程思政融入点: 波粒二象性,海唯物主义思想中和谐统一的内在	课堂 讲授 辩证	2 题
		46	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			实践教学进程表		
周次	实验项目名称	学时	实践教学进程表 重点、难点、课程思政融入点	项目类型 (验证/综 合/设计)	教学方式
周次	实验项目名称 用牛顿环测透镜 曲率半径	学时 3		(验证/综	
	用牛顿环测透镜		重点、难点、课程思政融入点 重点: 等厚干涉, 牛顿环的原理	(验证/综 合/设计)	方式
4	用牛顿环测透镜 曲率半径 迈克尔逊干涉仪	3	重点、难点、课程思政融入点 重点: 等厚干涉,牛顿环的原理 难点: 牛顿环装置的原理与操作 重点: 干涉条件,迈克尔逊干涉 仪的原理 难点: 迈克尔逊干涉仪的澄清干	(验证/综 合/设计)	方式 实验
6	用牛顿环测透镜 曲率半径 迈克尔逊干涉仪 测光波波长 光栅衍射光谱及	3	重点、难点、课程思政融入点 重点: 等厚干涉, 牛顿环的原理 难点: 牛顿环装置的原理与操作 重点: 干涉条件, 迈克尔逊干涉 仪的原理 难点: 迈克尔逊干涉仪的澄清干 涉的实验调整 重点: 光栅衍射原理及现象	(验证/综 合/设计) 验证	实验实验
6	用牛顿环测透镜 曲率半径 迈克尔逊干涉仪 测光波波长 光栅衍射光谱及 光波波长的测定 用分光计测三棱	3 3	重点、难点、课程思政融入点 重点: 等厚干涉,牛顿环的原理 难点: 牛顿环装置的原理与操作 重点: 干涉条件,迈克尔逊干涉 仪的原理 难点: 迈克尔逊干涉仪的澄清干 涉的实验调整 重点: 光栅衍射原理及现象 难点: 光栅的调节与应用 重点: 最小偏向角的测量	(验证/综 合/ 设计) 验证 验证	实验实验

		用 难点:稳恒电流场与静电场的近似	
合计:	18		
课程思政融入点:		完成每个实验,体会理论联系实际 申,在较难的实验中领略事物发展	 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

说明:1、由于实验设备台套数限制,实验期间,会将学生分成6组,6个实验项目同时进行教学。

2、由于实验室条件所限,实验时间将根据实验室的具体情况有所调节。

成绩评定方法及标准			
考核形式	评价标准	权重	
作业与考勤(百分制)	1、 作业评价标准: 作业进行批改和登记,对共性问题进行集中讲解; 2、 考勤评价标准: 缺勤扣分,超过三次不能参加期末考试。	15%	
实验操作(百分制)	1、评价标准:理解实验原理,掌握实验操作,正确记录数据,完成实验报告; 2、期末考试前进行实验考核。	15%	
期中考试(百分制)	1、 评价标准:参照试卷评分标准; 2、 要求:按知识单元进行期中考试, 能灵活运 用所学相关知识和方法进行求解,独立、按时完 成题目的解答;	20%	
期末考试(百分制)	1、评价标准:参照试卷评分标准; 2、要求:能灵活运用所学相关知识和方法进行求解,独立、按时完成考试;	50%	

大纲编写时间: 2019.8.31

系(部)审查意见:

我系(专业)课程委员会已对本课程教学大纲进行了审查,同意执行。

系(部)主任签名:

日期: 2019年 9月 6日