《高频电子线路》课程教学大纲

课程名称:高频电子线路 课程类别(必修/选修):必修

课程英文名称: High Frequency Electronic Circuits

先修课程: 高等数学、大学物理、模拟电路等

授课时间: 周二 (5-7) /1-15 周 **授课地点:** 7B-405

授课对象: 2017 级通信工程卓越班

开课院系: 电子工程与智能化学院

任课教师姓名/职称: 林娴静/讲师

联系电话: 13712310428

答疑时间、地点与方式:平时、课程结束后的第十六周整周;9A412;面授或电话。

课程考核方式: 开卷 () 闭卷 (√) 课程论文() 其它()

使用教材: 刘波粒主编.《高频电子线路》(第二版),北京:科学出版社,2014-06。

教学参考资料: (1)张肃文主编.《高频电子线路》(第五版)·北京:高等教育出版社·2009-05;

Email: 443421226 @qq.com

(2) 冯军·谢嘉奎主编.《电子线路》(非线性部分)(第五版)·北京:高等教育出版社·2010-08;(3) 王卫东编著.《高频电子线路》(第2版)·电子工业出版社·2009。

课程简介:《高频电子线路》是电子和通信类等专业重要的技术基础课,课程的实践性要求较高。 主要任务是研究模拟通信功能电路的基本原理、分析及设计方法。通过课程的学习和训练,培养学 生在电子信息技术、无线通信及相关领域从事科学研究、产品开发及设计工作的能力。主要内容涵 盖选频网络、高频小信号放大器、噪声与干扰、正弦波振荡器、非线性电路与时变电路、高频功率 放大器、振幅调制和解调;频率调制及解调等单元电路。

课程教学目标

- 1. 知识与技能目标:应使学生掌握串/并联谐振回路电路的结构、阻抗、谐振条件、谐振频率、品质因数;共射单调谐回路谐振放大器的交流通路、等效电路画法、参数的计算; 丙类高频功率放大器的电路组成、工作状态、工作原理;高频功率放大器的负载特性、基极调制特性、集电极调制特性、放大特性、调谐特性;三点式振荡器一般组成原则、交流等效电路画法及振荡频率计算;调幅、调频及其解调等相关电路的基本工作原理、实现方法;注意本课程与模拟电子线路的衔接,以及与后继课程联系,注重解决常见基本问题和实际问题。
- 2. 过程与方法目标: 在学习上述内容的过程中,使学生的思维和分析方法得到一定的训练, 在此基础上进行归纳和总结, 逐步形成科学的学习观和方法论。
- 3. 情感、态度与价值观发展目标:通过本课程的学习,培养作为一个通信工程技术人员必须具备的善于思考、归纳总结以及理论联系实践的学习方法,严谨治学的科学态度和积极向上的价值观,为未来的学习、工作和生活奠定良好的基础。

本课程与学生核心能力培养之间的关 联(授课对象为理工科专业学生的课 程填写此栏):

- ■核心能力1:运用数学、基础科学 及通信工程基础知识的能力;
- ■核心能力 2:独立完成通信工程相 关实验,以及分析与解释数据的能力;
- ■核心能力 3: 掌握通信工程相关领域所需基本技术、技巧及使用软硬件工具的能力;
- □**核心能力 4:** 具有对常用通信系统进行安装、调试、维护的工程实践能力:
- □**核心能力** 5: 项目管理、有效沟通、 领域整合与团队合作的能力;
- □**核心能力 6**: 发掘、分析及解决复杂通信工程问题的能力;
- □**核心能力7**: 认识时事议题与产业 趋势,了解工程技术对环境、社会及 全球的影响,并培育跨领域持续学习

的习惯与能力;

■核心能力8: 具有社会职业道德, 认知社会责任及尊重多元观点。

理论教学进程表	

	理论教学进程表								
周次	教学主题	教学 时长	教学的重点与难点	教学 方式	作业安排				
1-2	高频电路基础	6	重点: 串、并联谐振回路滤波器; 难点: 部分接入回路(电感、电容)阻抗变换。 课程思政融入点: 通过讲解通信技术发展简史, 加深学生对科学发展史的了解。激发学生学习科 学技术的兴趣,了解中国通信事业发展状况。	讲授	2.3 2.7 2.8 课程业两通常 5G 术文 节, 节, 节, 节, 节, 节, 节, 节, 节, 节, 节, 节, 节,				
3-5	高频 小信号放大器	9	重点:晶体管 Y 参数等效电路;单调谐回路谐振放大器; 难点:双调谐回路谐振放大器;多级单调谐回路谐振放大器;谐振放大器的稳定性。 课程思政融入点:通过小信号放大器理论与实验教学相结合的方法,引导学生对待实验数据坚持实事求实、严谨的科学态度,从理论的推导过程中验证实验原理,达到理论与实践相统一的科学的学习方法。	讲授	3.670思:看国域是国业展3.670思:看国域让解信猛况中领。了通迅状面,关系是一个,不是一个,不是一个,不是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,				
7-8	高频功率放大器	6	重点: 高频功率放大器的的电路组成、工作原理; 高频功率放大器的直流功率、输出功率、集电极效率; 难点: 高频功率放大器的动态分析; 高频功率放大器的负载特性、集电极调制特性等; 高频功率放大器基极偏置电压的设置; 高频功率放大器的实际电路。 重点: 反馈型振荡器的工作原理; 振荡器的起振、	讲授	4. 4 4. 7 4. 8				
10-11	正弦波振动器	6	平衡与稳定条件; LC 正弦波振荡器; 难点: 克拉泼振荡电路、西勒振荡电路;振荡器的频率稳定度。	讲授	5. 5 5. 9 5. 12				
12-13	振幅调制、解调 及混频	6	重点:调幅信号的分析; AM、DSB、SSB 信号;调幅信号的产生电路;调幅信号的解调电路; 难点:三极管混频器;二极管混频器;模拟乘法器混频器。	讲授	6. 1 6. 2 6. 8 6. 9				

14	角度调制与解说	周 2	重点 :调角信号的分析;调复 难点 :调频信号的产生电路 鉴频器) 课程思政融入点:通过高频时 使学生们了解中国通信技术的 自主研发的科研精神以及强多	(相位鉴频器,比例 电子线路课程的学习, 发展状况,培养学生	讲授	7.1 课作看品常军域加? 4 4 5 6 7 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	合计:	35					
			实践教学进程表		T	L. L. N.A.	
周次	实验项目名称	学时	重点与难点	项目类型(验证/综 合/设计)	教学 方式		
6	实验 1: 小信号 调谐放大器 (必做)	3	调谐放大器原理及指标测 量	验证	实验		
9	实验 2: LC 电容 反馈三点式振荡 器 (必做)		LC 电容反馈式振荡电路结 构、原理及指标测量	验证	实验		
15	实验 3: 低电平振幅调制器及制调 (必做)		调幅与解调电路的设计	综合	实验		
	实验 4: 丙类 高频功率放大器 (选做)	自由安排	电路的组成、调制特性	验证	实验		
	实验 5:集成电路(压控振荡器)构成的频率调制器/晶体振荡器(选做)		压控振荡器的工作机制/晶 体振荡器的工作机制	验证	实验		
	合计:	10					
			成绩评定方法及标准				
考核形式 评价标准						权重	
实验 (闭奄)		核,完成选定实验内容 确回答相关问题(详见实验考核相关文件)			10%	
			评分标准			20%	
期末考试(闭卷)					709	6	

大纲编写时间: 2019-9-5

系(专业)课程委员会审查意见:

我系(专业)课程委员会已对本课程教学大纲进行了审查,同意执行。

系(部)主任签名:

刘绰梓

日期: 2019 年 9 月 7 日